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LETTER TO THE EDITOR 

Dynamics of interacting flux kinks in layered high-T, 
superconductors 

Yoshihisa Enomoto 
Department of Physics, Faculty of Science, Nagoya Universtiy, Nagoya 44-01, Japan 

Received 5 August 1991 

Abstract. We have studied the dynamical behaviour of flux kinks, which appear in layered 
high-T,superconductorawhenthe magnetic fieldisparallelandrlightlyinclinedto the plane 
of the layers. We have obtained the equation of motion for flux kink position from the 
equation of motion for the displacement field of the flux line. Having performed computer 
simulationsof the resultingequation, we discuss the timedependent behaviour of the system 
with the initially random distributed kinks. 

It is widely established that the dynamics of the magnetic flux play an important role in 
the resistive behaviour of high-temperature superconductors (mscs) in a magnetic field. 
Recently Ivlev and Kopnin have pointed out that there is an intrinsic pinning mechanism 
in layered mcs for the flux motion in the direction perpendicular to the layers [l, 21. 
Such pinning originates from magnetic flux interactions with the layered structure. For 
the case with the applied magnetic field parallel and slightly inclined to the plane of 
layers, they have also predicted the existence of the flux kink where the flux line passes 
from one valley of the potential (defined below in equation (4)) to another, and have 
then studied the effect of a single moving flux kink on the current-voltage (Z-V) curve 
[Z ] .  The aim of the present letter is to discuss the effect of interaction among flux kinks 
on the resistivity, which was neglected by Ivlev and Kopnin. 

We consider a system such that the z axis is taken to be along the crystal c axis, the 
magnetic field is directed along they axis, H y ,  and the transport current, j ,  flows along 
the x axis. In addition to H a small magnetic field, H z ,  is applied along the z axis. In 
this situation, a vortex line will be inclined from they axis; this can then be described by 
the displacement U,. Assuming that U, is a function of y and time, t ,  only, Ivlev and 
Kopnin have derived the equation of motion for U, [Z ] :  

y '. 

where 11 is the kinetic coefficient, CM is the elastic modulus of the flux line lattice, j ,  is 
the critical current, and s is the interlayer distance. Here the third term in (1) denotes 
the Lorentz force and the last term denotes the pinning force due to the layers. Without 
lossof generality we have here set the quasimomentump = 0, defined in equation (20) 
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of [2]. (For detailed notation, see [2] .) Note that the above equation can be rewritten in 
the form 

(2 )  

where the free energy of the system, F[u,], is defined by 

with the potential V(u,) 

A moving one-kink solution for U, is obtained from (1) by making the amufz 

u,(y,r) = M ( y  - ut). (5) 
Hereafter we will often use the word 'kink' as a generic term, including both kink and 
antikink. The function M(y) satisfies the following equation with V' = 6V/6u,: 

with the boundary conditions 

where u'and uo are some of the stationary points, satisfying V'(u*) = V'(u@) = 0. The 
kink solutions, having the lowest excitation energy with Iu* - UBI = s, are known to be 
stable if U* and U@ take one of the values, U" + ns, with n being an integer and 0 < 
U" = (s/~T) sin-l(j/jJ < s/4. One-kink velocity U in (5) is determined as an eigenvalue 
of (6). Based on such a moving one-kink solution of U, for a weak-current limit and 
neglecting kink-kink interactions, Ivlev and Kopnin have calculated the induced electric 
field due to the kink motion [2]. 

In the following we discuss the time-dependent behaviour of interacting kinks from 
the initial random distributed kinks, and study such effects on the induced electric field. 
For this purpose we first obtained the equation of motion for kink positions, numbered 
from left to right, from the original equation (1) by using the reductive perturbation 
method [3]. To do so we must assume that: (i) the kink positions are well defined so 
that kink width (defined below in (12)) is very narrow; (ii) the distance between the 
neighbouring kinks is large so that we can use the binary interaction approximation; (iii) 
the transport current is small such that kinks move slowly in time; and (iv) no creation 
of kinks occurs due to the small thermal energy compared with the nucleation energy. 
The reductive perturbation method is based on the following approximation for U,: near 
the ith kink position, denoted asy,(t), the profile of U, is approximated by a superposition 
of independent kinks as 

U, = Mi(y - yi) + 2 [M,(Y - Y ; )  - Mj(-m)I + 2 [ M j b  -r;) -~M,(+m)l. (8) 
j > i  jci 

Here the one-kink solution of (6) ,  located at yi( t )  with velocity ui, is denoted as M i .  A 
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similar technique has been used for various models [4-71. So here we quote only the 
final result-a detailed discussion about deriving the following equation is presented 
elsewhere. The equation of motion fory j ( t )  is given by 

y - - ui = R(i - 1, i) - R(i, i + 1) (?; 1 (9) 

with 

R(n, m) = (*Z/w)E,.c, exp[-(y, + u,t - yn - u.t)/w] (10) 

Y = dC44 (11) 

w = 1 1 6  (12) 

g = 2nHy j,/csC, (13) 

where = 1 and - 1 correspond to a kink and an antikink, respectively, and w denotes 
the kink width. To obtain the above equation we have used the approximated solution 
of (6), valid onlyfor the weak-jlimit; 

ui = E ~ ( * z / ~ ) ( ~ / Y ) ( ~ / L )  = EP' 

M i ( y )  = (s/2n)4ej tan-' exp[-y/w]. 

(14) 

(15) 

From the above result we can see that the kink-kink interaction is repulsive (attractive) 
for the same-(different-) type kink pair. Note that several approximations used above 
require that 

U' Q W / t  = v (16) 

W Q S  (17) 

z = y/zg. (18) 

with 

Note also that in the present situation the induced electric field along the x axis, Ex,  is 
given by 

E ,  = (B,/c)u"A(t) (19) 

with a normalized electric field, A(t), defined by 

N(t)  NK ( t )  + NAK (l) (21) 

where B, ( < I f y )  is the induced magnetic field due to the distortion of the flux line lattice 
[Z] and is assumed for simplicity to have the same value for each kink, and N ( f )  denotes 
the total number of kinks at time t with the flux kink number NK(t) and the antikink 
number N M ( t ) .  
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Kink position 

Figure 1. Time variation of kink positions for the initial kink number NK(0) = 26, the initial 
antikink number NhK(0) = 25, and the initial number density of kinks no = 0.5. Solid lines 
denote the trajectories of kinks and dashed lines denote the trajectories of antikinks. 
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Figure 2. Time variation of the normalized electric field, A@), defined in equation (20) 
against I/lagla(f). The unit of time is taken to be r ,  defined in equation (18). 

The aforementioned kink equation of motion is still highly non-linear and cannot be 
solvedanalytically, but issuitable forcomputer simulations, compared with the original 
equation (1). We will now solve the above equation of motion numerically by using the 
Runge-Kutta-Gill method. In the following, the unit of length is taken to be the kink 
width, w ,  and the unit of time is z. We assume that kinks and antikinks annihilate each 
other upon contact. Then interactions between new neighbouring kinks are switched 
on. In actual simulations the neighbouring kinks and antikinks with a separation of less 
than 0.lw are assumed to have annihilated. Therefore the total number of kinks, N(t ) ,  
decreases with increasing time t .  In addition, we impose a periodic boundary condition 
with a system size t = N(0)/no, where no is the initial number density of kinks. With 
N(0) fixed, the changeable parameters, having physical meaning are: the initial density 
of kinks no, the initial number difference between kinks and antikinks A N -  N,(O) - 
NAK(0), and the velocity uD. The initial spatial distributions of kinks, { y i (0 ) } ,  are given 
by sets of random numbers. Hereafter we set AN = 1 and vo/V = 0.01, Note that the 
case with AN = 1 is thought to correspond to the work by Ivlev and Kopnin [2]. In figure 
1 we show an example of our numerical result for kink positions as a function of time, t ,  
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for N(0) = 51 and no = 0.5 with a time step At = 0.1 s. Many kinks can be seen to 
annihilate in the early stage. 

In the following simulations, to study the time-dependent behaviour of the system 
in alittle more detail, we set N(0)  = lo4 and the results below are obtained by averaging 
over 50 independent simulation runs. In figure 2 we show the time evolution of the 
normalized electric fieldA(t), defined in (20), for no = 0.5. The variation ofA(t) in the 
late stage seems to fit the l/log,o t behaviour. To check the validity of the above result, 
we have examined simulations by varying no and At. From the numerical results we can 
conclude thatA(t) shows the inversely logarithmic dependence on time tafter a transient 
period to exp(l/no) as 

A(t) = (a/loglo t )  + b for t>t0 (22) 
with a = 1.5 and b = 1.0. The transient period, to, can be interpreted as the time of a 
collision between a kink and an antikink at t = 0 [5]. As a result, we find numerically 
that for uo/V = 0.01 and AN = 1 the induced electric field, E,, decays logarithmically in 
time and asymptotically approaches the value given by Ivlev and Kopnin. We have 
checkedthatthesimilartimedependenceofE,c~uldbeobtainedsolongasu~/V< 0.05. 

In summary, we have numerically studied the dynamics of magnetic flux kinks in 
layered HTSCS. Simulating the equation of motion for kink positions from the initially 
randomdistributedflux kinks, we have found the inversely logarithmic timedependence 
of the induced electric field with AN = 1 for fairly small uo  or the transport current j .  To 
our knowledge, such time-dependent behaviour has not yet been reported. Systematic 
experimental studies taking account of this aspect are therefore highly desirable. Here 
we have examined just afew cases, asmentioned above. Further simulations by changing 
the parameters, as well as the initial conditions, are therefore needed. 

The author is grateful to Professor S Maekawa for a number of useful comments. 
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